pleasepoint_py.crm

class crm:
def executeQuery(self, sql: str) -> pandas.core.frame.DataFrame:

Executes a raw query on CRM Database and returns the result as a Pandas DataFrame.

Parameters
  • sql: String with the query to execute. PostgreSQL syntax required.
def getTableItems( self, table: str, order_by='id', order='asc', where='', columns='*') -> pandas.core.frame.DataFrame:

Configures a parametrized query for one of the CRM items tables. Returns the result as a Pandas DataFrame.

Parameters
  • table: The table to query. Has to be one of the following: user, user_value, product, product_value, shop, shop value, action, action_value, ticket, ticket_value, line_order, line_order_value
  • order_by: Sets the result order param. (id by default)
  • order: Sets the order by criteria (ASC by default)
  • where: filter statement (must begin with WHERE keyword) :params columns: columns to return (* by default)
def getProducts(self) -> pandas.core.frame.DataFrame:

Returns all products dataset from CRM database in Pandas DataFrame format

def getProductsWithValues(self, values='') -> pandas.core.frame.DataFrame:

Returns all CRM products with the chosen values joined in the same Pandas DataFrame

Parameters
  • values: string containing the product values to retrieve, separated by commas
def getShops(self) -> pandas.core.frame.DataFrame:

Returns all shops dataset from CRM database in Pandas DataFrame format

def getShopsWithValues(self, values='') -> pandas.core.frame.DataFrame:

Returns all CRM shops with the chosen values joined in the same Pandas DataFrame

Parameters
  • values: string containing the shop values to retrieve, separated by commas
def getCustomers(self) -> pandas.core.frame.DataFrame:

Returns all customers (users) dataset from CRM database in Pandas DataFrame format

def getCustomersWithValues(self, values='') -> pandas.core.frame.DataFrame:

Returns all CRM customers(users) with the chosen values joined in the same Pandas DataFrame

Parameters
  • values: string containing the customer values to retrieve, separated by commas
def getTickets(self, startDate='', endDate='') -> pandas.core.frame.DataFrame:

Returns all tickets dataset from CRM database in Pandas DataFrame format

def getTicketsWithValues(self, values='', startDate='', endDate='') -> pandas.core.frame.DataFrame:

Returns all CRM tickets with the chosen values joined in the same Pandas DataFrame

Parameters
  • values: string containing the ticket values to retrieve, separated by commas
def getLineOrders(self, startDate='', endDate='') -> pandas.core.frame.DataFrame:

Returns all line orders dataset from CRM database in Pandas DataFrame format

def getLineOrdersWithValues(self, values='', startDate='', endDate='') -> pandas.core.frame.DataFrame:

Returns all CRM line orders with the chosen values joined in the same Pandas DataFrame

Parameters
  • values: string containing the line order values to retrieve, separated by commas
def invokeIngestion( self, entity: str, dataframe: pandas.core.frame.DataFrame, wait=False):

Invokes PleasePoint Platform data ingestion for an entity type from a pandas dataFrame source. The column names of the dataFrame must contain at least the mandatory columns of the pointed entity type.

Parameters
  • entity: Has to be one of the valid platform types (user, product, shop, action, ticket or line_order)
  • dataframe: Pandas DataFrame supposed to be uploaded.
  • wait: Wait for ingestion process to complete.

The dataframe param column names must contain at least the mandatory columns of the pointed entity type.

  • user: email or reference_id
  • product: reference_id
  • shop: reference_id
  • action: reference_id, name
  • ticket: reference_id, shop-reference_id, user-reference_id
  • line_order: ticket-reference_id, product-reference_id, quantity, price
def execute_clv(self, reference_date=None, clv_period=None, wait=False):

Invokes Pleasepoint Platform CLV calculation, returns the identifier of the notebook_execution.

Parameters
  • reference_date: values of reference date have to be in YYYY-MM-DD format.
  • clv_period: Values of clv_period have to be a number followed by 'y' or 'm', depending on if a year or a month is wanted
  • wait: Wait for clv execution process to complete.
def refresh_filter(self, filter_id, wait=False):

Recalculates a Pleasepoint Platform Filter.

Parameters
  • filter_id: Filter Id.
  • wait: Wait for filter recalculation process to complete.
def extract_filter_users(self, filter_id):

Extracts a DataFrame containing the detailed information of the users in a user filter.

Parameters
  • filter_id: Filter Id.