pleasepoint_py.crm
Executes a raw query on CRM Database and returns the result as a Pandas DataFrame.
Parameters
- sql: String with the query to execute. PostgreSQL syntax required.
Configures a parametrized query for one of the CRM items tables. Returns the result as a Pandas DataFrame.
Parameters
- table: The table to query. Has to be one of the following: user, user_value, product, product_value, shop, shop value, action, action_value, ticket, ticket_value, line_order, line_order_value
- order_by: Sets the result order param. (id by default)
- order: Sets the order by criteria (ASC by default)
- where: filter statement (must begin with WHERE keyword) :params columns: columns to return (* by default)
Returns all products dataset from CRM database in Pandas DataFrame format
Returns all CRM products with the chosen values joined in the same Pandas DataFrame
Parameters
- values: string containing the product values to retrieve, separated by commas
Returns all shops dataset from CRM database in Pandas DataFrame format
Returns all CRM shops with the chosen values joined in the same Pandas DataFrame
Parameters
- values: string containing the shop values to retrieve, separated by commas
Returns all customers (users) dataset from CRM database in Pandas DataFrame format
Returns all CRM customers(users) with the chosen values joined in the same Pandas DataFrame
Parameters
- values: string containing the customer values to retrieve, separated by commas
Returns all tickets dataset from CRM database in Pandas DataFrame format
Returns all CRM tickets with the chosen values joined in the same Pandas DataFrame
Parameters
- values: string containing the ticket values to retrieve, separated by commas
Returns all line orders dataset from CRM database in Pandas DataFrame format
Returns all CRM line orders with the chosen values joined in the same Pandas DataFrame
Parameters
- values: string containing the line order values to retrieve, separated by commas
Invokes PleasePoint Platform data ingestion for an entity type from a pandas dataFrame source. The column names of the dataFrame must contain at least the mandatory columns of the pointed entity type.
Parameters
- entity: Has to be one of the valid platform types (user, product, shop, action, ticket or line_order)
- dataframe: Pandas DataFrame supposed to be uploaded.
- wait: Wait for ingestion process to complete.
The dataframe param column names must contain at least the mandatory columns of the pointed entity type.
- user: email or reference_id
- product: reference_id
- shop: reference_id
- action: reference_id, name
- ticket: reference_id, shop-reference_id, user-reference_id
- line_order: ticket-reference_id, product-reference_id, quantity, price
Invokes Pleasepoint Platform CLV calculation, returns the identifier of the notebook_execution.
Parameters
- reference_date: values of reference date have to be in YYYY-MM-DD format.
- clv_period: Values of clv_period have to be a number followed by 'y' or 'm', depending on if a year or a month is wanted
- wait: Wait for clv execution process to complete.